Complex numbers final test
-
Express each of the following in the form of \(a+ib\)
- \((3i)(-4i)\)
- \((3+i)(2i)\)
- \((2+3i)(-1+i)\)
- \(i^{15}-\frac{3}{i^5}\)
- \((3-2i)^2\)
-
Let \(z_1=5-4i\) and \(z_2=-2+3i\) be two complex numbers. Then find i. \(z_1+z_2\), ii. \(z_1-z_2\), iii. \(z_1\,z_2\), iv. \(\frac{z_1}{z_2}\), v. \(\frac{z_2}{z_1}\).
-
Find the multiplicative inverse of the following:
- \(5-12i\)
- \(-3+6i\)
- \(-8i\)
- \(1+2i\)
-
Express the following in the \(a+ib\) form:
\[\frac{(3+2i)(-1+5i)}{(5-3i) + (1-5i)}\] -
Find the modulus and conjugate of the following:
- \(5-12i\)
- \(-3+6i\)
- \(-8i\)
- \(1+2i\)
- \(10\)
-
Let \(z_1=3+4i\) and \(z_2=2-i\), then find
- \(\text{Re} \left( \frac{z_1}{\overline{z_2}} \right)\)
- \(\text{Im} \left( \frac{z_1}{\overline{z_2}} \right)\)
-
If \(x+iy=\frac{1-i}{1+i} - \frac{1+i}{1-i}\), then find \(x^2+y^2\).
-
(Bonus) If \((x+iy)^2=8-6i\) and \(x\) is positive, then find \(x\) and \(y\).
Hint
Use \((a+b)^2 - (a-b)^2 = 4ab\) to find \(x^2+y^2\) from given data.