Standard results for derivatives
Algebraic derivative rules
Constant Multiple Rule: \(\frac{d}{dx}(c \cdot f(x)) = c \cdot \frac{d}{dx}(f(x))\)
Sum Rule: \((u + v)' = u' + v'\)
Difference Rule: \((u - v)' = u' - v'\)
Product Rule: \((uv)' = u'v + uv'\)
Quotient Rule:
\[\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}\]
Chain Rule:
If \(y = f(u)\) and \(u = g(x)\), then
\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\]
Alternatively, if \(h(x) = f(g(x))\), then
\[h'(x) = f'(g(x)) \cdot g'(x)\]
Standard derivatives
Constant rule
\[\frac{d}{dx}(c) = 0\]
Power rule
\[\frac{d}{dx}(x^n) = nx^{n-1}\]
Trigonometric functions
\[
\begin{align*}
& \frac{d}{dx}(\sin x) = \cos x \\
& \frac{d}{dx}(\cos x) = -\sin x \\
& \frac{d}{dx}(\tan x) = \sec^2 x \\
& \frac{d}{dx}(\csc x) = -\csc x \cot x \\
& \frac{d}{dx}(\sec x) = \sec x \tan x \\
& \frac{d}{dx}(\cot x) = -\csc^2 x
\end{align*}
\]
Inverse trigonometric functions
\[
\begin{align*}
& \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \\
& \frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}} \\
& \frac{d}{dx}(\tan^{-1} x) = \frac{1}{1 + x^2} \\
& \frac{d}{dx}(\csc^{-1} x) = -\frac{1}{|x|\sqrt{x^2 - 1}} \\
& \frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}} \\
& \frac{d}{dx}(\cot^{-1} x) = -\frac{1}{1 + x^2}
\end{align*}
\]
Exponential and logarithmic functions
\[
\begin{align*}
& \frac{d}{dx}(e^x) = e^x \\
& \frac{d}{dx}(a^x) = a^x \ln a \\
& \frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0 \\
& \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, x > 0
\end{align*}
\]