Trigonometric formulas
Negative angles
- \(\sin{(-x)}=-\sin{x}\)
- \(\cos{(-x)}=\cos{x}\)
- \(\tan{(-x)}=-\tan{x}\)
Tip
Just change \(-x\) to \(x\), and add the sign depending the sign on \(IV\) quadrant.
Compound angles
-
\(\sin{(x+y)}=\sin{x}\cos{y}+\cos{x}\sin{y}\)
\(\sin{(x-y)}=\sin{x}\cos{y}-\cos{x}\sin{y}\)
-
\(\cos{(x+y)}=\cos{x}\cos{y}-\sin{x}\sin{y}\)
\(\cos{(x-y)}=\cos{x}\cos{y}+\sin{x}\sin{y}\)
-
\(\tan{(x+y)}=\frac{\tan{x}+\tan{y}}{1-\tan{x}\tan{y}}\)
\(\tan{(x-y)}=\frac{\tan{x}-\tan{y}}{1+\tan{x}\tan{y}}\)
-
\(\cot{(x+y)}=\frac{\cot{x}\cot{y}-1}{\cot{x}+\cot{y}}\)
\(\cot{(x-y)}=\frac{\cot{x}\cot{y}+1}{\cot{y}-\cot{x}}\)
Trigonometric ratios of compound angles
Check this short to understand: Trigonometric ratios of compound angles
Allied angles
Allied angles are angles whose sum or difference is a multiple of \(\frac{\pi}{2}\).
-
\(\sin{(\frac{\pi}{2}-x)}=\cos{x}\)
\(\sin{(\frac{\pi}{2}+x)}=\cos{x}\)
\(\sin{(\pi-x)}=\sin{x}\)
\(\sin{(\pi+x)}=-\sin{x}\)
-
\(\cos{(\frac{\pi}{2}-x)}=\sin{x}\)
\(\cos{(\frac{\pi}{2}+x)}=-\sin{x}\)
\(\cos{(\pi-x)}=-\cos{x}\)
\(\cos{(\pi+x)}=-\cos{x}\)
Info
You can remember these formulas using a simple process:
- Check whether the angle before \(x\) is an odd multiple of \(\frac{\pi}{2}\), or a multiple of \(\pi\).
- If it is a multiple of \(\frac{\pi}{2}\), change the trigonometric ratio as follows: \(sin \leftrightarrow cos\), \(tan \leftrightarrow cot\), \(cosec \leftrightarrow sec\).
- Depending on which quadrant final angle is, find the sign of original trigonometric ratio in that quadrant. Add that as sign in final result.
- Finally replace the angle with just \(x\).
Example: For \(\tan{(\frac{3\pi}{2}+x)}\),
- Interchange \(tan\) with \(cot\) because \(\frac{3\pi}{2}\) is odd multiple of \(\frac{\pi}{2}\).
- Since \(\frac{3\pi}{2}+x\) is in \(4^{th}\) quadrant, \(tan\) is negative.
So, \(\tan{(\frac{3\pi}{2}+x)}=-\cot{x}\).
Trigonometric Ratios for Triple Angles
Check this short to understand: Trigonometric Ratios for Allied Angles
Double angles
- \(\sin{2x}=2\sin{x}\cos{x}=\frac{2\tan{x}}{1+\tan^2{x}}\)
- \(\cos{2x}=(\cos^2{x}-\sin^2{x})=(2\cos^2{x}-1)=(1-2\sin^2{x})=\frac{1-\tan{^2x}}{1+\tan^2{x}}\)
- \(\tan{2x}=\frac{2\tan{x}}{1-\tan^2{x}}\)
Note
You can express all the trigonometric ratios in terms of \(\tan{x}\). This is useful to solve equations containing double angles of multiple trigonometric ratios.
Trigonometric Ratios for Double Angles
Check this short to understand: Trigonometric Ratios for Double Angles
Triple angles
- \(\sin{3x}=3\sin{x}-4\sin^3{x}\)
- \(\cos{3x}=4\cos^3{x}-3\cos{x}\)
- \(\tan{3x}=\frac{3\tan{x}-\tan^3{x}}{1-3\tan^2{x}}\)
Trigonometric Ratios for Triple Angles
Check this short to understand: Trigonometric Ratios for Triple Angles
Transformation formulae
Sum & difference of trigonometric ratios
- \(\cos{x}+\cos{y}=2\cos{\frac{x+y}{2}}\cos{\frac{x-y}{2}}\)
- \(\cos{x}-\cos{y}=-2\sin{\frac{x+y}{2}}\sin{\frac{x-y}{2}}\)
- \(\sin{x}-\sin{y}=2\sin{\frac{x+y}{2}}\cos{\frac{x-y}{2}}\)
- \(\sin{x}-\sin{y}=2\cos{\frac{x+y}{2}}\sin{\frac{x-y}{2}}\)
Product of trigonometric ratios
- \(2\cos{x}\cos{y}=\cos{(x+y)}+\cos{(x-y)}\)
- \(-2\sin{x}\sin{y}=\cos{(x+y)}-\cos{(x-y)}\)
- \(2\sin{x}\cos{y}=\sin{(x+y)}+\sin{(x-y)}\)
- \(2\cos{x}\sin{y}=\sin{(x+y)}-\sin{(x-y)}\)
Note
You can derive the product of trigonometric rations formulas using the sum & difference of trigonometric ratios.
Transformation Formulae
Check this short to understand: Transformation Formulae