Skip to content

Trigonometric ratios

Trigonometric ratios in terms of sides

  1. \(\sin{\theta}=\frac{\text{Opposite Side}}{\text{Hypotenuse}}\)
  2. \(\cos{\theta}=\frac{\text{Adjacent Side}}{\text{Hypotenuse}}\)
  3. \(\tan{\theta}=\frac{\text{Opposite Side}}{\text{Adjacent Side}}\)
Trigonometric Radios

Check this short to understand: Trigonometric Ratios

Relation between trigonometric ratios

  1. \(\tan{\theta}=\frac{\sin{\theta}}{\cos{\theta}}\)
  2. \(\text{cosec}\,{\theta}=\frac{1}{\sin{\theta}}\)
  3. \(\sec{\theta}=\frac{1}{\cos{\theta}}\)
  4. \(\cot{\theta}=\frac{\cos{\theta}}{\sin{\theta}}=\frac{1}{\tan{\theta}}\)

Trigonometric identities

  1. \(\sin^2{\theta} + \cos^2{\theta} = 1\)
  2. \(\sec^2{\theta} - \tan^2{\theta} = 1\)
  3. \(\text{cosec}^2{\theta} - \cot^2{\theta} = 1\)
Trigonometric Identities

Check this short to understand: Trigonometric Identities

Trigonometric ratios for common angles

\(\theta\) \(0^\circ\) \(30^\circ\) \(45^\circ\) \(60^\circ\) \(90^\circ\)
\(\sin{\theta}\) \(0\) \(\frac{1}{2}\) \(\frac{1}{\sqrt{2}}\) \(\frac{\sqrt{3}}{2}\) \(1\)
\(\cos{\theta}\) \(1\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{\sqrt{2}}\) \(\frac{1}{2}\) \(0\)
\(\tan{\theta}\) \(0\) \(\frac{1}{\sqrt{3}}\) \(1\) \(\sqrt{3}\) \(\text{undefined}\)
\(\text{cosec}\,\theta\) \(\text{undefined}\) \(2\) \(\sqrt{2}\) \(\frac{2}{\sqrt{3}}\) \(1\)
\(\sec{\theta}\) \(1\) \(\frac{2}{\sqrt{3}}\) \(\sqrt{2}\) \(2\) \(\text{undefined}\)
\(\cot{\theta}\) \(\text{undefined}\) \(\sqrt{3}\) \(1\) \(\frac{1}{\sqrt{3}}\) \(0\)

This table summarizes the values of sine, cosine, and tangent for common angles, expressed in degrees.

Trigonometric Radios for Some Standard Angles

Check this short to understand: Trigonometric Radios for Some Standard Angles

Signs in different quadrants

Quadrant I Quadrant II Quadrant III Quadrant IV
\(\sin{\theta}\) \(+\) \(+\) \(-\) \(-\)
\(\cos{\theta}\) \(+\) \(-\) \(-\) \(+\)
\(\tan{\theta}\) \(+\) \(-\) \(+\) \(-\)
Signs of Trigonometric Ratios

Check this short to understand: Signs of Trigonometric Ratios

Domains and ranges

Function Domain Range
\(\sin{\theta}\) \(R\) \([-1, 1]\)
\(\cos{\theta}\) \(R\) \([-1, 1]\)
\(\tan{\theta}\) \(R-\{(2n+1)\frac{\pi}{2}: n\in Z\}\) \(R\)
\(\text{cosec}\,{\theta}\) \(R-\{n\pi: n\in Z\}\) \((-\infty,-1]\cup[1,\infty)\)
\(\sec{\theta}\) \(R-\{(2n+1)\frac{\pi}{2}: n\in Z\}\) \((-\infty,-1]\cup[1,\infty)\)
\(\cot{\theta}\) \(R-\{n\pi: n\in Z\}\) \(R\)

These tables provide a summary of the values and properties of common trigonometric ratios for various angles, signs of ratios in different quadrants, and the domains and ranges of trigonometric functions.

Domain & Range of Trigonometric Ratios

Check this short to understand: Domain & Range of Trigonometric Ratios