Trigonometry final test
-
Convert the following from degrees to radians: [Just leave the answer in terms of \(\pi\)]
- \(22^\circ 30'\)
- \(300^\circ\)
- \(-75^\circ\)
-
Convert the following from radians to degrees: [Use \(\pi=\frac{22}{7}\) where needed]
- \(\frac{\pi}{10}\)
- \(-\frac{5\pi}{4}\)
- \(2.2\)
-
If you draw arcs of same length on 2 circles with radii \(15\,cm\) and \(25\,cm\) respectively, then what's the ratio of the angles made by them?
-
If a car travels \(44\,m\) along a circular path of radius \(28\,m\), then what's the angle covered by the car on the center? [Use \(\pi=\frac{22}{7}\) where needed] [Give the answer in degrees]
-
If \(\sec{\theta}=2\), and \(\theta\) is in \(4^{th}\) quadrant, then find all the other trigonometric ratios.
-
Give the values of following:
- \(\tan{-135^\circ}\)
- \(\sec{405^\circ}\)
- \(\text{cosec}{\frac{4\pi}{3}}\)
- \(\sec{75^\circ}\) [Hint: Use \(\cos{(a+b)}\)]
-
Prove the following:
- \(\cos{23^\circ}\cos{37^\circ}-\sin{23^\circ}\sin{37^\circ}=\frac{1}{2}\)
- \(\tan{(\frac{\pi}{4}+x)}\times \tan{(\frac{\pi}{4}-x)}=1\)
- \(2\cos{(\frac{3\pi}{2}-x)}\times \cos{(\pi+x)}=\sin{2x}\)
-
Prove the following:
- \(\sin^2{5x}-\sin^2{3x}=\sin{8x}\sin{2x}\)
- \(\frac{\sin{x}+\sin{2x}+\sin{3x}}{\cos{x}+\cos{2x}+\cos{3x}}=\tan{2x}\)
- \((\cos{3x}+\cos{x})^2+(\sin{3x}+\sin{x})^2=4\cos^2{x}\)
-
If \(\tan{x}=2\), then find \(\tan{2x}\), \(\sin{2x}\), and \(\cos{2x}\).
-
Find \(\sin{\frac{x}{2}}\), \(\cos{\frac{x}{2}}\), \(\tan{\frac{x}{2}}\), if \(cos{x}=\frac{7}{25}\).